Validating IOT and Block Chain Adoption for Home Automation and Block less Solution for Robust Penetration
DOI:
https://doi.org/10.55737/qjss.v-iv.24264Keywords:
Determinants of Smart Home, IOTA, Home Automation, Adoption of IOT, UTAUT2, Use BehaviorAbstract
The motivation behind this comprehensive study is twofold, i.e. validation of UTAUT2 for both potential and actual users of IOT as well as proposing the incorporation of blockchain 3.0 (IOTA) and challenges as novel constructs in UTAUT2. This study helps academicians and practitioners understand the antecedents of IOT adoption and underpins the core areas that need attention to foster adoption. The study incorporates 750 plus responses from both actual and potential users of IOT from the entire Pakistan. Three hundred fifty actual users and 400 plus potential users participated in the study and analyzed using Smart PLS. Performance expectancy, facilitating conditions, price value, and challenges were strong predictors of usage. However, effort expectancy was a strong predictor of actual user adoption, and IOTA was a significant predictor in the case of potential user adoption. The study of the IOT market in Pakistan is pivotal owing to its enormous potential and interest in IOT manufacturers. Our study serves as a useful guide for practitioners in the allocation of marketing budgets and designing of IOT products. This study expands the extant UTAUT2 by incorporating novel variables relevant to the upcoming decade.
References
Abbad, M. (2021). Using the UTAUT model to understand students’ usage of e-learning systems in developing countries. Education and Information Technologies, 1–20. https://doi.org/10.1007/s10639-021-10573-5
Alam, T., Salem, A. A., Alsharif, A. O., & Alhejaili, A. M. (2020). Smart Home Automation Towards the Development of Smart Cities. 5(1), 17–25. https://doi.org/10.36227/techrxiv.12657185.v1
Alghazi, S. S., Amirrudin Kamsin, Kamsin, A., Almaiah, M. A., Wong, S. Y., & Shuib, L. (2021). For Sustainable Application of Mobile Learning: An Extended UTAUT Model to Examine the Effect of Technical Factors on the Usage of Mobile Devices as a Learning Tool. Sustainability, 13(4), 1856. https://doi.org/10.3390/su13041856
Alsboui, T. A. A., Louie Qin, Qin, Y., Hill, R., & Al-Aqrabi, H. (2020). Enabling distributed intelligence for the Internet of Things with IOTA and mobile agents. Computing, 102(6), 1345–1363. https://doi.org/10.1007/s00607-020-00806-9
Altalhi, M. M. (2021). Towards Understanding the Students’ Acceptance of MOOCs: A Unified Theory of Acceptance and Use of Technology (UTAUT). International Journal of Emerging Technologies in Learning (Ijet), 16(2), 237–253. https://doi.org/10.3991/ijet.v16i02.13639
Anna Sołtysik-Piorunkiewicz, Sołtysik-Piorunkiewicz, A., & Zdonek, I. (2021). How Society 5.0 and Industry 4.0 Ideas Shape the Open Data Performance Expectancy. Sustainability, 13(2), 917. https://doi.org/10.3390/su13020917
Arfi, W. B., Imed Ben Nasr, Nasr, I. B., Kondrateva, G., Galina Kondrateva, Galina Kondrateva, & Hikkerova, L. (2021). The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context. Technological Forecasting and Social Change, 167, 120688. https://doi.org/10.1016/j.techfore.2021.120688
Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15–16), 4719–4742. https://doi.org/10.1080/00207543.2017.1402140
Bhandary, M., Parmar, M., & Ambawade, D. (2020). A Blockchain Solution based on Directed Acyclic Graph for IoT Data Security using IoTA Tangle. 2020 5th International Conference on Communication and Electronics Systems (ICCES), 827–832. https://doi.org/10.1109/icces48766.2020.9137858
Brous, P., Janssen, M., Herder, P. M., & Paulien M. Herder. (2020). The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations. International Journal of Information Management, 51, 101952. https://doi.org/10.1016/j.ijinfomgt.2019.05.008
Chao, C.-M. (2019). Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Frontiers in Psychology, 10, 1652–1652. https://doi.org/10.3389/fpsyg.2019.01652
Dean, D. L., & Suhartanto, D. (2019). The formation of visitor behavioral intention to creative tourism: The role of push-pull motivation. Asia Pacific Journal of Tourism Research, 24(5), 393–403. https://doi.org/10.1080/10941665.2019.1572631
Hung, D. N., Tham, J., Azam, S. M. F., & Khatibi, A. A. (2019). An empirical Analysis of perceived transaction convenience, performance expectancy, effort expectancy and behavior intention to mobile payment of Cambodian users. International Journal of Marketing Studies, 11(4), 77. https://doi.org/10.5539/ijms.v11n4p77
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
Garg, P., Gupta, B., Chauhan, A. K., Sivarajah, U., Gupta, S., & Modgil, S. (2020). Measuring the perceived benefits of implementing blockchain technology in the banking sector. Technological Forecasting and Social Change, 120407. https://doi.org/10.1016/j.techfore.2020.120407
Gladence, L. M., Anu, V. M., R. Rathna, Rathna, R., R. Rathna, & Brumancia, E. (2020). Recommender system for home automation using IoT and artificial intelligence. Journal of Ambient Intelligence and Humanized Computing, 1–9. https://doi.org/10.1007/s12652-020-01968-2
Gunasinghe, A., Hamid, J. A., Ali Khatibi, Khatibi, A., & Azam, S. M. F. (2019). The Adequacy of UTAUT-3 in Interpreting Academician’s Adoption to e-Learning in Higher Education Environments. Interactive Technology and Smart Education, 17(1), 86–106. https://doi.org/10.1108/itse-05-2019-0020
Hamdan, O., Shanableh, H., Zaki, I., Al-Ali, A.-R., & Shanableh, T. (2019). IoT-Based Interactive Dual Mode Smart Home Automation. 2019 IEEE International Conference on Consumer Electronics (ICCE), 1–2. https://doi.org/10.1109/icce.2019.8661935
Haque, A. B., Haque, A. K. M. B., & Tasmin, S. (2020). Security Threats and Research Challenges of IoT - A Review. J3ea, 1(4), 170–182. https://doi.org/10.38032/jea.2020.04.008
Singh, H., Verma, S., Pal, S., & Pandey, K. (2019). A step towards Home Automation using IOT. 2019 Twelfth International Conference on Contemporary Computing (IC3), 1–5. https://doi.org/10.1109/ic3.2019.8844945
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Iqbal, J., & Idrees, M. (2022). Understanding the IOT Adoption for Home Automation in the Perspective of UTAUT2. Global Business Review, 097215092211320. https://doi.org/10.1177/09721509221132058
Iqbal, M. S., Rahim, Z. A., Hussain, S. A., Ahmad, N., Kaidi, H. M., Ahmad, R., & Dziyauddin, R. A. (2021). Mobile communication (2G, 3G & 4G) and future interest of 5G in Pakistan: A review. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1061–1068. https://doi.org/10.11591/ijeecs.v22.i2.pp1061-1068
Jadil, Y., Rana, N. P., & Dwivedi, Y. K. (2021). A meta-analysis of the UTAUT model in the mobile banking literature: The moderating role of sample size and culture. Journal of Business Research, 132, 354–372. https://doi.org/10.1016/j.jbusres.2021.04.052
Janssen, M., Luthra, S., Mangla, S., Rana, N. P., & Dwivedi, Y. K. (2019). Challenges for adopting and implementing IoT in smart cities: An integrated MICMAC-ISM approach. Internet Research, 29(6), 1589–1616. https://doi.org/10.1108/INTR-06-2018-0252
Khechine, H., Raymond, B., Benoit Raymond, Marc Augier, Marc Augier, & Augier, M. (2020). The adoption of a social learning system: Intrinsic value in the UTAUT model. British Journal of Educational Technology, 51(6), 2306–2325. https://doi.org/10.1111/bjet.12905
Korotkyi, I. V., & Sachov, S. O. (2019). Hardware Accelerators for IOTA Cryptocurrency. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), 832–837. https://doi.org/10.1109/elnano.2019.8783449
Myeong-Jun Park & Joono Lee. (2021). Investigation of College Students’ Intention to Accept Online Education Services: An Application of the UTAUT Model in Korea. https://doi.org/10.13106/jafeb.2021.vol8.no6.0327
Nur, T., Panggabean, R. R., Rosinta Ria Panggabean, & Panggabean, R. R. (2021). Factors Influencing the Adoption of Mobile Payment Method among Generation Z: the Extended UTAUT Approach. 4(1), 14–28. https://doi.org/10.24815/jaroe.v4i1.19644
Onaolapo, S., & Oyewole, O. (2018). Performance Expectancy, Effort Expectancy, and Facilitating Conditions as factors influencing smart phones use for mobile learning by postgraduate students of the university of Ibadan, Nigeria. Interdisciplinary Journal of E-Skills and Lifelong Learning, 14, 095–115. https://doi.org/10.28945/4085
Park, J., Chitchyan, R., Angelopoulou, A., & Murkin, J. (2019). A Block-Free Distributed Ledger for P2P Energy Trading: Case with IOTA? CAiSE, 111–125. https://doi.org/10.1007/978-3-030-21290-2_8
Patil, P. P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144. https://doi.org/10.1016/j.ijinfomgt.2020.102144
Navin, R. (2021). IOT Home Automation. International Journal for Research in Applied Science and Engineering Technology, 9(12), 1820–1823. https://doi.org/10.22214/ijraset.2021.39630
Raschendorfer, A., Mörzinger, B., Steinberger, E., Pelzmann, P., Oswald, R., Stadler, M., Manuel Stadler, & Bleicher, F. (2019). On IOTA as a potential enabler for an M2M economy in manufacturing. Procedia CIRP, 79, 379–384. https://doi.org/10.1016/j.procir.2019.02.096
Ryu, J. S., Fortenberry, S., Sally Fortenberry, & Sally Fortenberry. (2021). Performance Expectancy and Effort Expectancy in Omnichannel Retailing. 12(4), 27–34. https://doi.org/10.13106/jidb.2021.vol12.no4.27
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial Least Squares Structural Equation Modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), Handbook of Market Research (pp. 1–40). Springer International Publishing. https://doi.org/10.1007/978-3-319-05542-8_15-1
Umair, M., Cheema, M. A., Cheema, O., Li, H., & Lu, H. (2021). Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors, 21(11), 3838. https://doi.org/10.3390/s21113838
Vamvaka, V., Stoforos, C., Palaskas, T., & Botsaris, C. (2020). Attitude toward entrepreneurship, perceived behavioral control, and entrepreneurial intention: Dimensionality, structural relationships, and gender differences. Journal of Innovation and Entrepreneurship, 9(1), 1–26. https://doi.org/10.1186/s13731-020-0112-0
Venkatesh, Thong, & Xu. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157. https://doi.org/10.2307/41410412
Wei, M. F., Wei, M.-F., Luh, Y.-H., Yir-Hueih Luh, Huang, Y. H., Chang, Y. C., & Chang, Y.-C. (2021). Young Generation’s Mobile Payment Adoption Behavior: Analysis Based on an Extended UTAUT Model. Journal of Theoretical and Applied Electronic Commerce Research, 16(4), 618–637. https://doi.org/10.3390/jtaer16040037
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
Yeo, V. C. S., Goh, S. K., & Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35(35), 150–162. https://doi.org/10.1016/j.jretconser.2016.12.013