Sectoral Analysis of Electricity Consumption on Methane and Nitrous Oxide Emissions: A Case Study of Pakistan
DOI:
https://doi.org/10.55737/qjss.v-iv.24068Keywords:
Electricity Consumption, Methane, Nitrous Oxide, Pakistan, Environmental Pollution, Energy, Sectoral AnalysisAbstract
The problem of environmental pollution is a burning issue in the current era. Many studies have been conducted on the relationship between environmental pollution and energy consumption, but there is rare literature on disaggregating sectors of energy consumption, especially focusing on electricity consumption that causes environmental pollution in the context of Pakistan. The study conducts quantitative research on the topic spanning from 1972-2022. Unit root was conducted, and as mixed integrating orders were found, I(0) and I(I) Autoregressive Distributive lag models were found appropriate for methodology. Furthermore, Causality was also conducted by applying Toda Yamamoto. Methane and Nitrous oxide emissions were found to have a long-run relationship. The most prominent sector in found contributing to pollution is the household sector, followed by industrial, commercial, and agriculture.
References
Abdalla, M., Smith, P., & Williams, M. (2011). Emissions of nitrous oxide from agriculture: Responses to management and climate change. ACS Symposium Series, 1072(October 2011), 343–370. https://doi.org/10.1021/bk-2011-1072.ch018
Akinlo, A. E. (2009). Electricity consumption and economic growth in Nigeria: Evidence from cointegration and co-feature analysis. Journal of Policy Modeling, 31(5), 681–693. https://doi.org/10.1016/j.jpolmod.2009.03.004
Akinwale, Y. (2013). Empirical Analysis of the Causal Relationship Between Electricity Consumption and Economic Growth in Nigeria. British Journal of Economics, Management & Trade, 3(3), 277–295. https://doi.org/10.9734/bjemt/2013/4423
Alola, A. A., Adedoyin, F. F., & Alola, U. V. (2024). Investigating the environmental and economic dimensions of household, commercial, and industrial energy intensities in the USA. Carbon Management, 15(1). https://doi.org/10.1080/17583004.2024.2349161
Anav, A., Menut, L., Khvorostyanov, D., & Viovy, N. (2012). A comparison of two canopy conductance parameterizations to quantify the interactions between surface ozone and vegetation over Europe. 117, 1–20. https://doi.org/10.1029/2012JG001976
Arisoy, I., & Ozturk, I. (2014). Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach. Energy, 66, 959–964. https://doi.org/10.1016/j.energy.2014.01.016
Auffhammer, M., & Wolfram, C. D. (2014). Powering up China: Income distributions and residential electricity consumption. American Economic Review, 104(5), 575–580. https://doi.org/10.1257/aer.104.5.575
Baggs, E. M. (2008). A review of stable isotope techniques for N 2 O source partitioning in soils : recent progress , remaining challenges and future considerations y. 1664–1672. https://doi.org/10.1002/rcm
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., Brien, J. M. O., Potter, J. D., Sheibley, R. W., Sobota, D. J., & Thomas, S. M. (2011). Nitrous oxide emission from denitri fi cation in stream and river networks. 108(1). https://doi.org/10.1073/pnas.1011464108
Bharathi, C., Rekha, D., & Vijayakumar, V. (2017). Genetic Algorithm Based Demand Side Management for Smart Grid. Wireless Personal Communications, 93(2), 481–502. https://doi.org/10.1007/s11277-017-3959-z
Bouznit, M., Pablo-Romero, M. P., & Sánchez-Braza, A. (2018). Residential electricity consumption and economic growth in algeria. Energies, 11(7), 1–18. https://doi.org/10.3390/en11071656
Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research, 11(January), 100533. https://doi.org/10.1016/j.jafr.2023.100533
Chowdhury, J. I., Hu, Y., Haltas, I., Balta-Ozkan, N., Matthew, G., & Varga, L. (2018). Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors. Renewable and Sustainable Energy Reviews, 94(February), 1153–1178. https://doi.org/10.1016/j.rser.2018.06.040
Deep, G., Ibrahim, M., Shahzad, U., & Jain, M. (2021). Exploring the nexus between agriculture and greenhouse gas emissions in BIMSTEC region : The role of renewable energy and human capital as moderators. Journal of Environmental Management, 297(July), 113316. https://doi.org/10.1016/j.jenvman.2021.113316
Desjardins, R. L., Worth, D. E., Pattey, E., VanderZaag, A., Srinivasan, R., Mauder, M., Worthy, D., Sweeney, C., & Metzger, S. (2018). The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements. In Agricultural and Forest Meteorology (Vol. 248). https://doi.org/10.1016/j.agrformet.2017.09.003
Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U. M., Sutton, M. A., Cape, J. N., Dore, A. J., Vieno, M., Simpson, D., Zaehle, S., Stocker, B. D., Rinaldi, M., Facchini, M. C., & Flechard, C. R. (2015). Effects of global change during the 21st century on the nitrogen cycle. 13849–13893. https://doi.org/10.5194/acp-15-13849-2015
Gellings, C. W. (2017). Evolving practice of demand-side management. Journal of Modern Power Systems and Clean Energy, 5(1), 1–9. https://doi.org/10.1007/s40565-016-0252-1
Grottera, C., Barbier, C., Sanches-Pereira, A., Abreu, M. W. de, Uchôa, C., Tudeschini, L. G., Cayla, J. M., Nadaud, F., Pereira, A. O., Cohen, C., & Coelho, S. T. (2018). Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households. Renewable and Sustainable Energy Reviews, 94(December 2016), 877–888. https://doi.org/10.1016/j.rser.2018.06.063
Jiang, Q., Khattak, S. I., Ahmad, M., & Lin, P. (2021). Mitigation pathways to sustainable production and consumption: Examining the impact of commercial policy on carbon dioxide emissions in Australia. In Sustainable Production and Consumption (Vol. 25). Elsevier B.V. https://doi.org/10.1016/j.spc.2020.11.016
Karakurt, I., Aydin, G., & Aydiner, K. (2012). Sources and mitigation of methane emissions by sectors: A critical review. Renewable Energy, 39(1), 40–48. https://doi.org/10.1016/j.renene.2011.09.006
Khalid, R., & Sunikka-Blank, M. (2018). Evolving houses, demanding practices: A case of rising electricity consumption of the middle class in Pakistan. Building and Environment, 143(April), 293–305. https://doi.org/10.1016/j.buildenv.2018.07.010
Kudeyarov, V. N. (2020). Nitrous Oxide Emission from Fertilized Soils: An Analytical Review. Eurasian Soil Science, 53(10), 1396–1407. https://doi.org/10.1134/S1064229320100105
Lal, R. (2004). Carbon emission from farm operations. Environment International, 30(7), 981–990. https://doi.org/10.1016/j.envint.2004.03.005
Lenzen, M., Wier, M., Cohen, C., Hayami, H., Pachauri, S., & Schaeffer, R. (2006). A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy, 31(2–3), 181–207. https://doi.org/10.1016/j.energy.2005.01.009
Liang, L., Lal, R., Du, Z., Wu, W., & Meng, F. (2013). Estimation of nitrous oxide and methane emission from livestock of urban agriculture in Beijing. Agriculture, Ecosystems and Environment, 170, 28–35. https://doi.org/10.1016/j.agee.2013.02.005
Lin, B., & Wang, A. (2015). Estimating energy conservation potential in China’s commercial sector. Energy, 82, 147–156. https://doi.org/10.1016/j.energy.2015.01.021
Marcotullio, P. J., Sarzynski, A., Albrecht, J., & Schulz, N. (2012). The geography of urban greenhouse gas emissions in Asia: A regional analysis. Global Environmental Change, 22(4), 944–958. https://doi.org/10.1016/j.gloenvcha.2012.07.002
Naser, H., & Alaali, F. (2021). Mitigation of Nitrous Oxide Emission for Green Growth: An Empirical Approach using ARDL. Advances in Science, Technology and Engineering Systems Journal, 6(4), 189–195. https://doi.org/10.25046/aj060423
Ponniran, A., Nur Azura, M., & Joret, A. (2012). Electricity Profile Study for Domestic and Commercial Sectors. International Journal of Integrated Engineering, 4(3), 8–12. http://penerbit.uthm.edu.my/ojs/index.php/ijie/article/viewFile/616/402
Ramzan, S., Rasool, T., Bhat, R. A., Ahmad, P., Ashraf, I., Rashid, N., ul Shafiq, M., & Mir, I. A. (2020). Agricultural soils a trigger to nitrous oxide: a persuasive greenhouse gas and its management. Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08410-2
Sakah, M., de la Rue du Can, S., Diawuo, F. A., Sedzro, M. D., & Kuhn, C. (2019). A study of appliance ownership and electricity consumption determinants in urban Ghanaian households. Sustainable Cities and Society, 44(October), 559–581. https://doi.org/10.1016/j.scs.2018.10.019
Sharma, S. K., Choudhury, A., Sarkar, P., Biswas, S., Singh, A., Dadhich, P. K., Singh, A. K., Majumdar, S., Bhatia, A., Mohini, M., Kumar, R., Jha, C. S., Murthy, M. S. R., Ravindranath, N. H., Bhattacharya, J. K., Karthik, M., Bhattacharya, S., & Chauhan, R. (2011). Greenhouse gas inventory estimates for India. Current Science, 101(3), 405–415. https://www.jstor.org/stable/24078519
Simion, C. P., Verdeș, C. A., Mironescu, A. A., & Anghel, F. G. (2023). Digitalization in Energy Production, Distribution, and Consumption: A Systematic Literature Review. Energies, 16(4). https://doi.org/10.3390/en16041960
Smith, P., Reay, D., & Smith, J. (2021). Agricultural methane emissions and the potential formitigation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2210). https://doi.org/10.1098/rsta.2020.0451
Squalli, J. (2017). Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data. Energy, 127, 479–488. https://doi.org/10.1016/j.energy.2017.03.156
Subramanyam, V., Ahiduzzaman, M., & Kumar, A. (2017). Greenhouse gas emissions mitigation potential in the commercial and institutional sector. Energy and Buildings, 140, 295–304. https://doi.org/10.1016/j.enbuild.2017.02.007
Tarazkar, M. H., Kargar Dehbidi, N., Ansari, R. A., & Pourghasemi, H. R. (2021). Factors affecting methane emissions in OPEC member countries: does the agricultural production matter? Environment, Development and Sustainability, 23(5), 6734–6748. https://doi.org/10.1007/s10668-020-00887-8
Toma, S., & Naruo, S. (2017). Total quality management and business excellence: The best practices at Toyota motor corporation. Amfiteatru Economic 19(45), 566-580.
Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M. J., Srivastava, N., & Smith, P. (2015). The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990-2012. Global Change Biology, 21(7), 2655–2660. https://doi.org/10.1111/gcb.12865
Twerefou, D. K., & Abeney, J. O. (2020). Efficiency of household electricity consumption in Ghana. Energy Policy, 144(June), 111661. https://doi.org/10.1016/j.enpol.2020.111661
Wadanambi, R. T., Wandana, L. S., Chathumini, K. K. G. L., Dassanayake, N. P., Preethika, D. D. P., & Arachchige, U. S. P. R. (2020). The effects of industrialization on climate change. Journal of Research Technology and Engineering, 1(4), 86–94. https://www.jrte.org/wp-content/uploads/2020/10/
Williams, B., Bishop, D., Gallardo, P., & Chase, J. G. (2023). Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations. Energies, 16(13). https://doi.org/10.3390/en16135155
Ye, Y., Koch, S. F., & Zhang, J. (2018). Determinants of household electricity consumption in South Africa. Energy Economics, 75, 120–133. https://doi.org/10.1016/j.eneco.2018.08.005
Yoo, S. H. (2006). The causal relationship between electricity consumption and economic growth in the ASEAN countries. Energy Policy, 34(18), 3573–3582. https://doi.org/10.1016/j.enpol.2005.07.011
Yusuf, R. O., Noor, Z. Z., Abba, A. H., Hassan, M. A. A., & Din, M. F. M. (2012). Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews, 16(7), 5059–5070. https://doi.org/10.1016/j.rser.2012.04.008